<meta name='google-adsense-platform-account' content='ca-host-pub-1556223355139109'/> <meta name='google-adsense-platform-domain' content='blogspot.com'/> <!-- --><style type="text/css">@import url(https://www.blogger.com/static/v1/v-css/navbar/3334278262-classic.css); div.b-mobile {display:none;} </style> </head><body><script type="text/javascript"> function setAttributeOnload(object, attribute, val) { if(window.addEventListener) { window.addEventListener('load', function(){ object[attribute] = val; }, false); } else { window.attachEvent('onload', function(){ object[attribute] = val; }); } } </script> <div id="navbar-iframe-container"></div> <script type="text/javascript" src="https://apis.google.com/js/platform.js"></script> <script type="text/javascript"> gapi.load("gapi.iframes:gapi.iframes.style.bubble", function() { if (gapi.iframes && gapi.iframes.getContext) { gapi.iframes.getContext().openChild({ url: 'https://draft.blogger.com/navbar/7194865331481400134?origin\x3dhttp://nvrlookback.blogspot.com', where: document.getElementById("navbar-iframe-container"), id: "navbar-iframe" }); } }); </script>
profile

kaijie!
KPOP, 2NE1 ROCKS TTM!!!, CL, PARKBOM, MINZY & DARA!, 19. April.1995
Imma HCI dude!
tagboard

affiliates

5Loyal'06/6Loyal'07 | Class Blog |
| Alex |
| Delyse |
| En Ci |
| Glenda |
| Han Zhen |
| Jia Wen |
| Marcus |
| Ruo Ning |
| Shi Xuan |
| Wen Le |
| Yuan Ting |



1K'08/2O4'09
| Jun Zhou |
| Derek Neo |
| Khia Yi |
| Quan Yi |
| Victor |



Hci*SJAB
| Hci*SJAB |
| Kwang yu |
| Benjamin Toh |
| Luk Yean |
| Timothy Yu |
| Arturo |
| Benjwe |
| Derek |



Otherz
| Yi Jung |
| Hui Yee |
| Cara |
| Timothy Foong |
| Arina |
| Valen |
| Rachel |
| Stacy |





LOL

Monday, February 2, 2009 @ 2/02/2009 11:15:00 PM


I hav decided to post my english ace DRAFT. And Keep Your Comments To YOURSELF.
I hav completed an english ace DRAFT this long :

Human Genome Project

What was the Human Genome Project?

Completed in 2003, the Human Genome Project (HGP) was a 13-year project coordinated by the U.S. Department of Energy and the National Institutes of Health. During the early years of the HGP, the Wellcome Trust (U.K.) became a major partner; additional contributions came from Japan, France, Germany, China, and others.

Project goals were to

(http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml Wednesday, October 15, 2008)

In 1911, Alfred Sturtevant, then an undergraduate researcher in the laboratory of Thomas Hunt Morgan, realized that he could - and had to, in order to manage his data - map the locations of the fruit fly (Drosophila melanogaster) genes whose mutations the Morgan laboratory was tracking over generations. Sturtevant's very first gene map can be likened to the Wright brothers' first flight at Kitty Hawk. In turn, the Human Genome Project can be compared to the Apollo program bringing humanity to the moon.

The hereditary material of all multi-cellular organisms is the famous double helix of deoxyribonucleic acid (DNA), which contains all of our genes. DNA, in turn, is made up of four chemical bases, pairs of which form the "rungs" of the twisted, ladder-shaped DNA molecules. All genes are made up of stretches of these four bases, arranged in different ways and in different lengths. HGP researchers have deciphered the human genome in three major ways: determining the order, or "sequence," of all the bases in our genome's DNA; making maps that show the locations of genes for major sections of all our chromosomes; and producing what are called linkage maps, complex versions of the type originated in early Drosophila research, through which inherited traits (such as those for genetic disease) can be tracked over generations.

The HGP has revealed that there are probably about 20,500 human genes. The completed human sequence can now identify their locations. This ultimate product of the HGP has given the world a resource of detailed information about the structure, organization and function of the complete set of human genes. This information can be thought of as the basic set of inheritable "instructions" for the development and function of a human being.

The International Human Genome Sequencing Consortium published the first draft of the human genome in the journal Nature in February 2001 with the sequence of the entire genome's three billion base pairs some 90 percent complete. A startling finding of this first draft was that the number of human genes appeared to be significantly fewer than previous estimates, which ranged from 50,000 genes to as many as 140,000.The full sequence was completed and published in April 2003.

Upon publication of the majority of the genome in February 2001, Francis Collins, the director of NHGRI, noted that the genome could be thought of in terms of a book with multiple uses: "It's a history book - a narrative of the journey of our species through time. It's a shop manual, with an incredibly detailed blueprint for building every human cell. And it's a transformative textbook of medicine, with insights that will give health care providers immense new powers to treat, prevent and cure disease."

The tools created through the HGP also continue to inform efforts to characterize the entire genomes of several other organisms used extensively in biological research, such as mice, fruit flies and flatworms. These efforts support each other, because most organisms have many similar, or "homologous," genes with similar functions. Therefore, the identification of the sequence or function of a gene in a model organism, for example, the roundworm C. elegans, has the potential to explain a homologous gene in human beings, or in one of the other model organisms. These ambitious goals required and will continue to demand a variety of new technologies that have made it possible to relatively rapidly construct a first draft of the human genome and to continue to refine that draft (http://www.genome.gov/12011238 November 7, 2008)

Though the HGP is finished, analyses of the data will continue for many years. Follow this ongoing research on our Milestones page. An important feature of the HGP project was the federal government's long-standing dedication to the transfer of technology to the private sector. By licensing technologies to private companies and awarding grants for innovative research, the project catalyzed the multibillion-dollar U.S. biotechnology industry and fostered the development of new medical applications. (http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml Wednesday, October 15, 2008)

The Human Genome Project (HGP) was one of the great feats of exploration in history - an inward voyage of discovery rather than an outward exploration of the planet or the cosmos; an international research effort to sequence and map all of the genes - together known as the genome - of members of our species, Homo sapiens. Completed in April 2003, the HGP gave us the ability to, for the first time, to read nature's complete genetic blueprint for building a human being. (http://www.genome.gov/10001772 November 7, 2008)

What's Next?
Turning Genomics Vision Into Reality

In "A Vision for the Future of Genomics Research," published in the April 24, 2003 issue of the journal Nature, the National Human Genome Research Institute (NHGRI) details a myriad of research opportunities in the genome era. This backgrounder describes a few of the more visible, large-scale opportunities.

The International HapMap Project

Launched in October 2002 by NHGRI and its partners, the International HapMap Project has enlisted a worldwide consortium of scientists with the goal of producing the "next-generation" map of the human genome to speed the discovery of genes related to common illnesses such as asthma, cancer, diabetes and heart disease.

Expected to take three years to complete, the "HapMap" will chart genetic variation within the human genome at an unprecedented level of precision. By comparing genetic differences among individuals and identifying those specifically associated with a condition, consortium members believe they can create a tool to help researchers detect the genetic contributions to many diseases. Whereas the Human Genome Project provided the foundation on which researchers are making dramatic genetic discoveries, the HapMap will begin building the framework to make the results of genomic research applicable to individuals.

Encyclopedia Of DNA Elements (ENCODE)

This NHGRI-led project is designed to develop efficient ways of identifying and precisely locating all of the protein-coding genes, non-protein-coding genes and other sequence-based, functional elements contained in the human DNA sequence. Creating this monumental reference work will help scientists mine and fully utilize the human sequence, gain a deeper understanding of human biology, predict potential disease risk, and develop new strategies for the prevention and treatment of disease.

The ENCODE project will begin as a pilot, in which participating research teams will work cooperatively to develop efficient, high-throughput methods for rigorously and fully analyzing a defined set of target regions comprising approximately 1 percent of the human genome. Analysis of this first 30 megabases (Mb) of human genome sequence will allow the project participants to test and compare a variety of existing and new technologies to find the functional elements in human DNA.

Chemical Genomics

NHGRI is exploring the acquisition and/or creation of publicly available libraries of organic chemical compounds, also referred to as small molecules, for use by basic scientists in their efforts to chart biological pathways. Such compounds have a number of attractive features for genome analysis, including their wide structural diversity, which mirrors the diversity of the genome; their ability in many cases to enter cells readily; and the fact that they can often serve as starting points for drug development. The use of these chemical compounds to probe gene function will complement more conventional nucleic acid approaches.

This initiative offers enormous potential. However, it is a fundamentally new approach to genomics, and largely new to basic biomedical research as a whole. As a result, substantial investments in physical and human capital will be needed. NHGRI is currently planning for these needs, which will include large libraries of chemical compounds (500,000 - 1,000,000 total); capacity for robotic-enabled, high-throughput screening; and medicinal chemistry to convert compounds identified through such screening into useful biological tools.

Genomes to Life

The Department of Energy's "Genomes to Life" program focuses on single-cell organisms, or microbes. The fundamental goal is to understand the intricate details of the life processes of microbes so well that computational models can be developed to accurately describe and predict their responses to changes in their environment.

"Genomes to Life" aims to understand the activities of single-cell organisms on three levels: the proteins and multi-molecular machines that perform most of the cell's work; the gene regulatory networks that control these processes; and microbial associations or communities in which groups of different microbes carry out fundamental functions in nature. Once researchers understand how life functions at the microbial level, they hope to use the capabilities of these organisms to help meet many of our national challenges in energy and the environment.

Structural Genomics Consortium

Structural genomics is the systematic, high-throughput generation of the three-dimensional structure of proteins. The ultimate goal for studying the structural genomics of any organism is the complete structural description of all proteins encoded by the genome of that organism. Such three-dimensional structures will be crucial for rational drug design, for diagnosis and treatment of disease, and for advancing our understanding of basic biology. A broad collection of structures will provide valuable biological information beyond that which can be obtained from individual structures.

To complement various international efforts in structural genomics, the United Kingdom's Wellcome Trust is considering creating a charitable organization - the Structural Genomics Consortium - with a group of pharmaceutical and other companies. The model for the new consortium would be the highly successful SNP Consortium formed in 1999 by the Trust and 12 companies to map human genetic variations, called single nucleotide polymorphisms (SNPs). Like the SNP Consortium, the Structural Genomics Consortium will develop pre-competitive data, placing all protein structures in public databases. (http://www.genome.gov/11006944 September 2006)

Done By: Kok Kai Jie

Class: 2-O4

Index: 11